
HIV protease Inhibitors

Dr K Naresh

HIV Protease is an Aspartyl protease of HIV Aspartyl proteases Pepsin, Renin, Cathepsin D. Catalyses cleavage of peptide bonds Contains Aspartic acid residue in its active site.

HIV Protease-Structure

- →It is a dimer made up of two identical protein units
- →each consists of 99 amino acids.
- → the active site lies within the interface between the protein units.
- → It is symmetrical with two fold rotational symmetry.

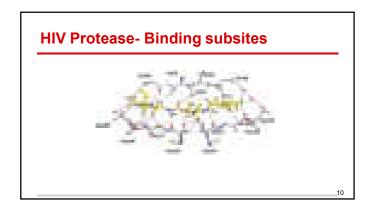
HIV Protease-Structure

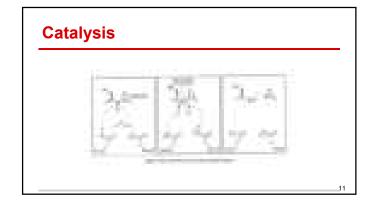
- The amino acids Asp-25, Thr-26 and Gly 27 from each monomer located on the floor of the active site.
- each monomer provides a flap (Ile 50/ ile 50') act as ceiling.

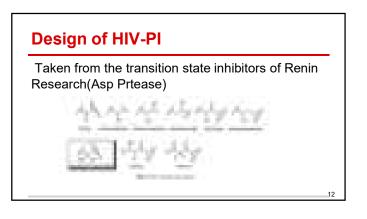
HIV Protease- Sub-Structure specificity

This enzyme can cleaves a variety of peptide bonds.

But crucially cleaves between a proline residue and an aromatic amino acid residue. (Phe/Tyr)


<section-header><section-header><image><image><image><image>


HIV Protease- Binding subsites


There are 8 binding subsites on either side of the active site.

These subsites accepts the a. acid residue of the substrate.

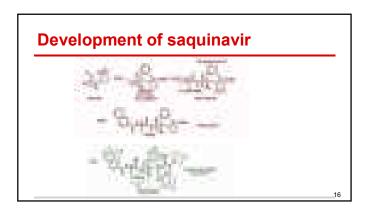
N and O of each peptide bond of the substrate backbone is involved in a H-Bond interaction with the enzyme.

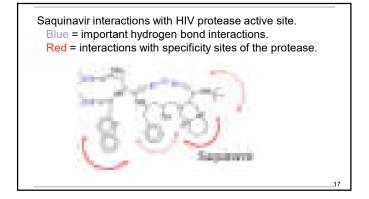
Design of HIV-PI

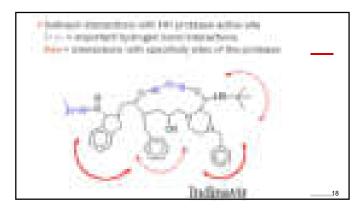
- ★Transition state inhibitors mimic the transition state of the the enzyme catalysed reaction.
- ★Tran State likely to bound to the active site more strongly than either the substrate or product.

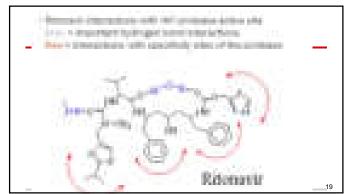
Design of Pl's

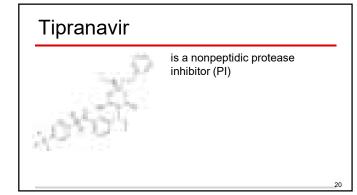
13


15


Ts structures are inherently unstable necessary to design an inhibitor that contains tetrahedral centre to mimic the Tstate it should be stable to hydrolysis.


an at study by

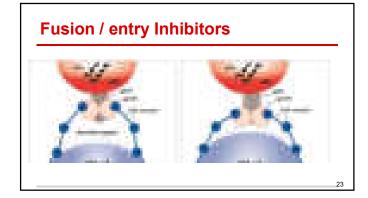

Design


- Most of the PI are designed to have core unit spanning spanning S1 and S1' subsites.
- Then substituents are added to either end to fit S2/S3 and S2'/S3'.
- Natural peptide fit for 8 subsites
- good interaction with enzyme
- High MW + Poor oral Bioavailability(not advisable)

FUSION/ENTRY INHIBITORS

Fusion / entry Inhibitors

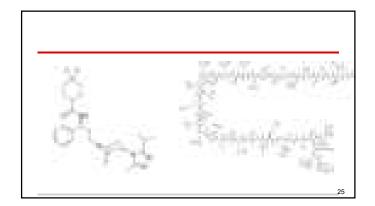
•Entry inhibitors prevent HIV from entering human immune cells.

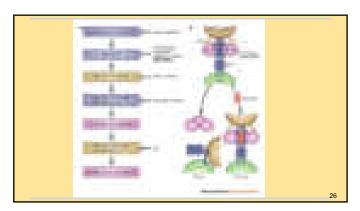

There are several key proteins involved in the HIV •entry process:

-CD4, a protein receptor found on the surface of Helper T cells in the human immune system, also called CD4+ T cells

-gp120, a protein on HIV surface that binds to the CD4 receptor -CCR5, a second receptor found on the surface of CD4+ cells, called a chemokine coreceptor

-CXCR4, another chemokine coreceptor found on CD4+ cells


-gp41, a HIV protein, closely associated with gp120, that penetrates the cell membrane



Fusion / entry Inhibitors- Approved

Maraviroc (brand-named Selzentry, or Celsentri outside the U.S.)

Enfuvirtide (INN) is an HIV fusion inhibitor, It is marketed under the trade name Fuzeon (Roche).

